Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biochem ; 14: 12, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23692611

RESUMO

BACKGROUND: The improvement of biomedical properties, e.g. biocompatibility, of poly(3-hydroxyalkanoates) (PHAs) by copolymerization is a promising trend in bioengineering. We used strain Azotobacter chroococcum 7B, an effective producer of PHAs, for biosynthesis of not only poly(3-hydroxybutyrate) (PHB) and its main copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV), but also alternative copolymer, poly(3-hydroxybutyrate)-poly(ethylene glycol) (PHB-PEG). RESULTS: In biosynthesis we used sucrose as the primary carbon source and valeric acid or poly(ethylene glycol) 300 (PEG 300) as additional carbon sources. The chemical structure of PHB-PEG and PHB-HV was confirmed by 1H nuclear-magnetic resonance (1H NMR) analysis. The physico-chemical properties (molecular weight, crystallinity, hydrophilicity, surface energy) and surface morphology of films from PHB copolymers were studied. To study copolymers biocompatibility in vitro the protein adsorption and COS-1 fibroblasts growth on biopolymer films by XTT assay were analyzed. Both copolymers had changed physico-chemical properties compared to PHB homopolymer: PHB-HV and PHB-PEG had less crystallinity than PHB; PHB-HV was more hydrophobic than PHB in contrast to PHB-PEG appeared to have greater hydrophilicity than PHB; whereas the morphology of polymer films did not differ significantly. The protein adsorption to PHB-PEG was greater and more uniform than to PHB and PHB-PEG copolymer promoted better growth of COS-1 fibroblasts compared with PHB homopolymer. CONCLUSIONS: Thus, despite low EG-monomers content in bacterial origin PHB-PEG copolymer, this polymer demonstrated significant improvement in biocompatibility in contrast to PHB and PHB-HV copolymers, which may be coupled with increased protein adsorption and hydrophilicity of PEG-containing copolymer.


Assuntos
Azotobacter/metabolismo , Polímeros/metabolismo , Adsorção , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Bioengenharia , Biomassa , Células COS , Varredura Diferencial de Calorimetria , Chlorocebus aethiops , Interações Hidrofóbicas e Hidrofílicas , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Microscopia de Força Atômica , Poliésteres/química , Poliésteres/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Polímeros/química , Proteínas/química , Proteínas/metabolismo , Valeratos/química , Valeratos/metabolismo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...